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ABSTRACT

In this work, the control laws of a bank-to-turn mis-

sile using and optimal estimator in the terminal guidance

phase were designed, and the effect of increasing the number

of measurement sensors in the missile to generate more

information on the state was investigated. In the design of

the control law the modern optimal control theory with the a

quadratic performance index was used. Implementation of

this control law required the use of a Kalman filter as the

optimal estimator. The extended Kalman filter algorithm was

utilized in the present study since the measurement states

were non-linear functions of the state vectors. In order to

test the effects of the implementation of the increased mea-

surement sensors, two-, four-, and six-measurement sensors

were assumed to be implemented in the optimal estimator. By

computer analysis, the designed guidance laws were evaluated

and the effect of the implementation of increased measurement

sensors was tested.

The results of the simulation revealed that the designed

guidance law was successful within the specified scenarios,

the effect of the implementation of increased measurement

sensors for the estimator was favorable only in that

increased measurement sensors generated more information

about the state vectors,
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I INTRODUCTION

The bank-to-turn missile has high lift acceleration in

a direction perpendicular to its wings. For airbreathing

missiles which are required for large stand-off ranges it

also offers the advantage of lower inlet angles of attack

than that of skid-to-turn missiles.

Although the control laws using the modern guidance

control theory are more complex than the normally used

proportional navigation air-to-ground method, they have

great potential for maneuvering targets in air-to-air

engagement situations. The application of optimal control

and estimation theory to bank-to-turn missile configurations

has been tried in order to obtain increased performance. In

the application of the optimal control theory to the bank-

to-turn missile, it is necessary to have information on all

states or an estimate of the state variables that have not

been measured. Since the state information available from

the typical missile sensors is limited, it is necessary to

employ an estimator. The estimator used in this study was -

a first order extended Kalman filter.

The present work addressed the design and evaluation of

the optimal state estimator and optimal control laws for

application to a bank-to-turn missile. In the development

of this work, Chapter 2 will describe the kinematics of the

13



missile and formulate the equations of the motion. All

major assumptions are listed. The optimal controller is

described in Chapter 3. The simulation results of the.

controller on three scenarios described later are used to

check the suitability of the optimal controller. The

optimal estimator is covered in Chapter 4, the formulation

of the state equation, measurement equations and the

derivations of the elements of Jacobean matrix are covered.

The extended Kalman filter algorithm for non-linear system

is then reviewed. Before the final computer simulation a

discussion is given on the nominal parameters needed in

initializing the Kalman filter. The results of the simula-

tion of estimators with two--; four-, and six-measurement

vectors on a typical scenario are then presented. In

Chapter 5, the simulation results of the control laws imple-

mented the estimator with two-, four- and six-measurement

sensors on three scenarios is described. The detail analy-

sis of the results is developed in order to investigate the

effect of the key variables of the control system on a bank-

to-turn missile. The mean miss distance determined from 50

Monti Carlo runs as a performance standard was used in the

analysis of the results of the control laws as a function of

the key variables. Finally, the conclusion are summarized

in the last Chapter.

14
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II. KINENLUTICS OF A BANK-TO-TURN MISSILE

A. ASSUMPTIONS

The geometry and the equations of motion of the missile

will be developed, representing the positions in space,

under the following assumptions:

1. The local geographic coordinate system will be used

as the inertial reference.

2. To simplify the equation of motion the stability

axes are adopted for the missile body.

3. The missile velocity due to thrust is constant.

There is no missile acceleration in velocity due to J

thrust.

4. Each control surface or surfaces is rigid.

5. Relative to the body axes, each control system has

only one degree of freedom. The missile's control

acceleration vector acts normal to the velocity

vector, that is, the dot product of acceleration

vector and velocity vector is zero, also the

acceleration acts through the missile center of

gravity.

6. The Euler angles ev ' v and 0 will be used to

describe the orientation of the missile with

respect to inertial space, where 0 v and ev are

horizontal and vertical flight path angles, and

is the roll or bank angle.
15



7. The first order lags with time constants T and

T 0 to a roll rate command Pc and a normal

acceleration command ac will be considered for

the dynamic response of the missile.

B. MISSILE CONTROL METHOD

Before going into the mathematical detail concerning

the motion of a missile in space as a result of a guidance

command, it is helpful to review with the control law for a

bank-to-turn missile. The guidance system detects whether

the missile is flying too much or too high to the left,

right or vertical. The guidance system measures these

deviations or errors and sends signals to the control system

to reduce these errors to aero. The task of the control

system therefore is to maneuver the missile quickly and

efficiently as a result of these signals. In a bank-to-turn

missile system, the guidance angular error detector produces

two signals R and ¢ in terms of polar coordinate expres-

sion, showed in Figure 2.1. The same signals can be

expressed in another way, that is, in cartesian coordinate.

The usual method is to regard the signal as a command

to roll through an angle a measured from the vertical

and then to maneuver outwards by means of the missile's

elevators. The method of maneuvering the missile is as

follows. The command goes as a positive command to one

control surface and a negative command to the other, this

16



MISSILE '

,,RTARGET

FIGURE 2.1. MISSILE CONTROL SYSTEM IN POLAR CO-ORD.

causes the missile to roll. The R command goes to

surfaces always as a positive demand, this causes the

missile to accelerate normal to the velocity vector. The

intention is to make the response in roll fast so that the

commands can be applied simultaneously which makes for

simplicity, only a pair of control surfaces are used as

ailerons and elevators at the same time, control is obtained

by means of the separated servos.

C. GEOMETRY OF WOTION IN SPACE

The motion of a missile as a particle may be described

by using coordinate measured with moving axes (relative-

motion analysis). The analysis of motion can be simplified

by using measurements made with respect to a moving coordi-

nate system. In present work, the equations of motion will

17
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be described with respect to the initial missile body axes

taken as the inertial axes. After launching, the missile

body axes changes position, but the relative position,

velocity and acceleration are still computed in inertial

axes, that is, in the initial body axes. The current zero

effort miss distance is calculated. This will then be

transformed to values in missile body axes to compute the

amount of the control inputs to the missile using Euler's

transformation.

Figure 2.2 shows the missile and target as points with

respective vector velocity Vm and V . In this analysis,

because IImI is assumed to be at least ZVtj , and the

angle of attack is assumed to be small, the lead angle '

between VR and the missile longitudinal axis is small.

Let the vector denote the relative position of the target

with respect to the missile. The orientation of the sight

line vector in inertial space can be represented by the

angle i"R and eR , as shown in Figure 2.2. The sight

line vector is resolved into three components in inertial

axes as follows:

Rx R*cos(eR)*ccs(:PR) = Xt - Xm (2.1)

Ry - R*cos(OR)*sin(PR) -Yt - Ym (2.2)

Rz = - R*sin = Zt - Zm (2.3)

Where R is the magnitude of the sight line vector.

19
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Define the relative velocity vector:

Vr V (2.4)

Where Vt and V are target and missile velocities.

The rate of change of the sight line vector's magnitude

is equal to the component of Vl along R It can be

expressed as following:

Iy B
R R (2.5)

V *R + V *R+ V
R rx x ry y rz Rz (2.6)2 2(Rx + R + R'2)x y

Where Vrx V tx Vmx

V V -Vry ty my

Vrz V tz Vmz

are the relative velocity components in the inertial frame.

In the geometry, the relative angles l and eR also

will be expressed by the relative vectors:

eR = " tan 1/2 (2.6)

20
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R9

= -tanl (2.7)
r R,

Where eR and are the elevation and the azimuth angles

of the relative sight line vector in the inertial frame.

Then the rate of change of both angles are

Vre -&
R R

sine vcos-vr V - sine vsinv V r cose Vrz

(Rx2 + R / +. R

* V . -sinV + C" )
v_ .rx vry (2-9)2 R 7 -

* Rcos9v. (R +R + L R
V' x y +z*)cose

Where VRO and rR are the rates of change in 0 and

IV components, is shown in Figure 2.3. These quantities

will be used later in developing the estimator state

equations and will also be used to represent the variables

for the missile seeker. The quantities 0R eR 'R '

R and R (corrupted by noise) are the set of measurements

assumed available from the missile seeker.

D. KINEMATICS OF CONTROL VECTOR

Figures 2.4 and 2.5 are views from near and side of

missile. am  and € represent the magnitudes of the

21
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FIGURE 2.4 KINENLATICS OF CONTROL VECTORS VIEWED

FROM REAR OF MISSILE.

..--AXIS

a .cos-

HORIZONTAL

gcosSv

FIGURE 2.5 KINELATICS OF CONTROL VECTORS VIEWED
FROM SIDE OF MISSILE.
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missile acceleration due to the acceleration command (ac)

and the bank angle due to the roll rate command (Pc) each -

other. g represents the gravitational effect at the center

of gravity of the missile. As mentioned in control method,

the sign of a is such that it is positive upward with

respect to the wings. Figure 2.5 shows that the accelera-

tion normal to the velocity vector has the components due

to the elevator control input and the effect of the gravity.

The total magnitude of the acceleration normal to the

velocity vector can be represented as

a *Cos g*sine ...m v

The velocity and acceleration components for simple

circular motion can be represented as

2an - /'

See Reference 1. -

Using this definition, the differential equations

describing the rate of change of the flight path angles are

a cosp - gcose v
Cv -- m(2 .10) .

m

24



am sine

V cose (2.11)
m v

Note am*coso g*cose is the magnitude of the normal
v

acceleration component to the velocity vector in missile

side plane and am*sin4 is the magnitude of the normal

acceleration component to the velocity vector in the x-y

plane. The acceleration component of the missile velocity

Vm has only the component of the effect of gravity in the

missile side plane under the assumption that the missile

velocity is constant. The differential equation is:

Vm = -g*sin v  (2.12"

The rates of change of the missile position components

(Xm, YM, ZM) can be obtained by integrating the components

of missile velocity. From Figure 2.2, the components of

missile velocity (Vmx, VImy, Vmz) in inertial frame are

given by

X =r V *cosev*Cos' (2.13)

YM = VMy = Vm*cosOv *Sinv (2.14)

Z = Vmz Vm*sin6v (2.15)

Let the response of the missile to input command in

normal acceleration and roll rate be considered. If a

demand is made on a missile for a transverse acceleration,

25



it is initiated by sonding a signal to the appropriate con-

trol surface. The missile acceleration am follows the

demanded acceleration ad in a manner which may be

characterized by a frequency wm (weather cock frequency)

and a damping factor P For simplicity, in present

work, only the first order lags with time constant T and

To  are assumed, the equation of the first-order system can

be represented as follows:

X(t) + l./r*X(t)) = f(t)

Taking the Laplace transformation on has

X(S) = F(S)/(S+1./T)

with zero initial condition. Applying these to the BTT

missile control system.

T a + am  a (2.16)

T + P = P (2.17) --~~p c-- .

Rearranging the differential equation.

am = (a - am)/T (2.18)
m c m a (.8

P = (Pc pm)/p (2.19)

= P (2.o20)

26



= . .-'.

Where ac and PC are the acceleration and roll rate

commands. Equation (2.20) is by definition. From the

above differential equations the control ratios are

transformed as follows:

a (S) 1m ( 2 .2 1)
a a

P 1 (2.22)
P (S) T S 1
c p

Equations (2.10) through (2.22) constitutes the dynamic

equations describing missile motion in response to the

command inputs ac and Pc The solution of these

equations provide missile position (Xm , Ym , Zm)

orientation and magnitude of velocity (ip ' e , Vm) and

orientation and magnitude of control acceleration (4 , am)

E. CO-ORDINATE TRANS FORMIAT ION

Given that the missile is on guided flight to compute

the magnitudes of the control inputs at any moment, it is

necessary to transform the instantaneous values from the

sensors in the inertial frame to the instantaneous values in

body frame. The transformation from one frame to another

can be accomplished through a transformation matrix. The

transformation matrix wiill be developed.

Define an inertial coordinate system with unit vectors

I, J, K. Also,define a missile body axis coordinate system

27



with unit vectors i, j, k. It is desired to find the trans-

formation between the I, J, K system and the i, j, k system.

The I, J, K system can be thought to be oriented so

that I points north, J east, and K down. Similarly, the

i, j, k system has i along the longitudinal axis of the

missile (which by assumption is along the velocity vector

Vm), j out the right wing, and k down.

Consider three successive rotations a , 6 and

The v rotation is about the inertial z axis, and

transforms to an intermediate axis systems il, j1 , kl.

The ev  rotation is about the J. axis and transforms to an

axis system i2, J2. k.. The last rotation about the

i2 axis transforms from flight path axes to missile body

axes. As a result, the total transformation from 'inertial

to body axes is given by

[ [1 [~ev][4 ] j [A] (2.23)
kK K

Where A is the total transformation matrix from inertial to

body frame. The elements of the a matrix from Reference 1

are:

all - cos(6 V )*cos( p )

a12 - cos(e )*sin(v)
V V

a13 = -sin(6r)
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a2l sn( )sinle C -) cav)~'l~

a23 sin(-W-cos(e-

aM cos.)snQ*Cos (,j ~ sin(;)*sint

a .52 COS 4.)sn nsin(e,%rC) c 0.-;)*o(

a33 cos 4) cos S
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I I. AN OPTILRL CONTROLLER

Although this work is primarily concerned with the

effect of an optimal estimator on the performance of a bank-

to-turn missile, we will first outline the theory of an

optimal controller in this section. The guidance laws

considered here were first developed by Stallard [Ref. 10].

The following is a brief outline of his work.

A. GEOMETRY

Figure 3.1 shows the applicable geometry representing

the Projected-Zero-Control miss (PZC miss) distance in the

terminal state. The problem is considered to be three-

dimensional and two major axes system are used:

1. A seeker-oriented axis system for estimation or

measurement, and

2. The three principal axes of the missile for the

control problem,

Xb, Yb, Zb denote the target coordinates relative to the

missile along its principal axes. The body system is repre-

sented a time T - 0 by a set of Eulian angles which

relate it to an earth fixed system. The angle L is the

incremental roll angle from the present missile axes to any

future orientation at time T , shown dashed in Figure 3.1.

The PZC miss represents the total Projected-Zero effort -

miss distance and is defined as the miss distance which
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would occur if no further control was exercised on the

missile at T = Ti It is composed of a Y-components

(PZCY miss) and a Z-component (PZCZ miss). Under the

assumption of constant velocity the X-component (PZCX miss)

is represented by the distance that the missile has to fly

at any time, since it is not effected by control, it is

not shown in Figure 3.1.

._b--

b at time t

p:cytmiss

Y at time t C-missb a A(
*AM. 

."

FIGURE 3.1 COMPONENTS OF PXC, MISS DISTANCE.
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B. SUMMADRIZED DESCRIPTION OF AN OPTIL,1AL CONTROLLER

Given a time-varying linear system of the form,

X = F(t)X + G(t)U (3.1)

Where X is n-component state vector

U is m-component control vector.

An optimal control is one that minimizes a performance

index made up of a quadratic form in the terminal state

plus an integral form of quadratic forms in the control and

the state:

j I (XTSf = + 1 jT (XT AX U UTBU)dt (3.2)
f-- T Ti

fT

Where the Sf and A are positive semidefinite matrix and

B is a positive definite matrix. An appropriate choice of

these matrices must be made to obtain acceptable level of

X(Ti) , (X(t) and U(t)

The guidance law determined in Reference 8 is of the

form:

[ ~ ~U = (a, 'P)T :i.n
Uc ca cPC

With the performance index chosen (the weighting on the

state vector was not considered in Reference 8.
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1 2 2 TJ (X + + ) + - ( - U) B(U - U dt " )
' (U b -"Ti -bb

TO  (3.3)

Where the first term is one-half the required miss distance,

the second term is included in order to eliminate infinite

energy solutions. B is a 2 by 2 positive definite,

symmetric weighting matrix and of the form

B1 0

B = (3.4)
0 B 2 ""

with 1/B.. = (Ti To)X maximum acceptable value of
'3

2
SUi(T)i A detailed derivative of the optimal guidance

law is given in Reference 10.

The solutions of the above equation from Reference 8

give the optimal acceleration command at time T between

TO and Ti as

3Tac go Mbz) (3.5)

3BI + Tgb

Where T is the remaining time to go until intercept and

go

Mbz is the PZC-miss along the missile normal force axis and

the negative sign is due to definition of the normal
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acceleration as positive in the upward direction. The

optimal roll rate command at time T between TO and Ti

from Reference 8 is given by

21a T2
C =1a cg °  by (3.6)

a T +63 Bc go?

Where Mby is the PAC-miss along the wing axis. Defining

the roll error:

tan (3.7)
Sb z

An alternate form for Pc can be obtained by dividing

Equation (3.6) by Equation (3.5), then

? 3-
7a - Tg (T o  + 3 B1 ) .PC 7 2 T ( tan(A ) (3.8)

a T +6C go +6B 2

II
Because the solution of PCwas based on an assumption of

small missile roll excusions, the tanL2 term in

Equation (3.8) can be replaced by A to yield

2 3
7a 2 T T 3 + 3 B1)

PCgo g 3 (3.9)
ac  Tgo + 63 B2
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The optimal controller is implemented in the present work

using Equations (3.5), (3.7), and (3.9). In computing the

control input, T , Y and Z-component of PZC-miss andgo

the elements of the weighting matrix are needed.

C. APPROXIMATING TIMIE-TO-GO

It is necessary for the Time-To-Go and the Projected-

Miss-Distance in missile body axes to be specified at time

T to compute the optimum control input. The Time-To-Go

will be defined at first, then the state variables will be

introduced as means for formulating the necessary equations.

The target acceleration components of the state variables

will be modeled since it is assumed that any information

about the target acceleration cannot be obtained from the

active seeker of the missile. Then using this target

acceleration model the algorithm for computing the other

state variables will be developed.

The Time-To-Go until intercept, Ti , is required for

computing the control input. Let the time to intercept be

defined as the time to minimum range. Under the assumption

that the relative velocity vectors may be considered

constant at its present value until intercept. T can be

found at time, T , as:

TL R r r
P VT. - -- - - (3.10)

I I rl IV-r
35I
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Where R is the present position of the target relative to

the missile and the factor in brackets in the component of

V along R • An alternate form of T is:

- f~y-+R- +R

T RxVrx + Ry r, + RzVrz-
i I Irx2 + y 2 + V 2 (3.11)

rx ry rz "3.1.

The negative sign comes from the sign of V as shown in

Figure 2.2 and Equation (2.6).

D. PROJECTED-ZERO-CONTROL MISS (PZC MISS) DISTANCE

The Projected-Zero-Control miss distance (PZC-miss) is

defined as the miss distance which would occur if there

were no further control input after time T

In this work the state vectors are defined as the

following state variables

Tr

X = (R, Ry R , Vrx, Vry, Vrz, atx, aty, atz ) T

Where Rr is the relative missile distance to target

Vr is the relative missile velocity to target
r

a t  is the target acceleration

A model for target acceleration has been assumed. This

is given as follows:

at(T) -at 0 e- [ l > 0 (3.12)
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Where a is the intial target acceleration and " is the

reciprocal of the acceleration time constant. The initial-

target acceleration, 4g's, will be assumed for each

scenario, and a = 1/20 for evasive maneuver as indicated

in Reference 10 will be chosen. These values will be used

in the simulation of the optimal controller.

With the assumption that a state estimator is available

to provide estimates of the state vector at current time (t),

the values of the state variables for no control inputs at

future time, can be obtained easily using the integration,

i.e.,

V (t) = Vr (to) + at(T)dT

tO

R(t) = R(tO) +f V (Td

The results of these integrations are

Vr (t) = Xr(to) + 1/a (I e a(t t0))at(to) (3.13)

R(t) R(tO) + (t - tO)*V r(to)

(3.14)
[1/0L 2(,:,(t t -t1 + e -cx(t -to) )l~at(t0)

Where tO and t denote current time and future time. It

should be noticed that above integration is based on the
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assumption of a single physical dimension. If this assump-

tion is to be applied to three-dimensional problem, it must

be concluded that there are no coupling among the X, Y, Z

dimension. Let Tg o  t - to then the components of the

PZC-miss in inertial axes at current time (tO) can be

expressed as

Mx Rx rx •..

M y R Ry +Tgo ry
z. Ti Rz TO T rZ TO.(

f 0 0 [atx0 fy 0 a .IS ::
Saty.

0 0f a
S tz TO (.,

01[- I
0 :'

(1/2),ngTgo2-Tg -

Where f fy = / a 2 - 1 + e go] and the last

term accounts for the free fall effect of gravity in the

vertical axis.

The components of the PZC-miss in missile body axes for

control input calculation are obtained via the Euler trans-

formation matrix:
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[ xM% b y9 [ v 1 iv  %I [A ] It V'

Where it is assumed that the missile has exact knowledge of

its orientation angles ,v, ,v v '' from the accurate

inertial measurement units.

The values of optimal control vectors (ac and P C)

then, are calculated from time to go (Tgo , PZC-miss in
00

body axes and weighting matrix components (B1 and B2) which

may be determined according to the desired miss distance and

intercepting time. In a later section, the weighting

matrix will be developed and the scenarios will be set up

for computer simulation.

E. SIMULATION RESULTS

The guidance law in this work was tested on a simple

six-degree-of-freedom simulation using only plausible

numbers without reference to an), actual missile or design.

Before the computer simulations, the weighting matrix

of the performance index selected in Reference 8 will be

calculated using the initial state, X(O) , the missile

operating time imposed, T (5 sec) and the constraint input

vectors. It is assumed that the missile has a velocity

advantage of two over that of the target, a zero- and 0.5
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second-time lag auto pilots for pitch with limits of -37's,

+20g's and for roll rate with limits of +6.28 rad/sec.

The allowable miss distance which is usually determined

by sizing of the warhead was chosen as 5 meters. Which

makes the first term of the performance index Equation

(3.3) equal to 12.5 meters. The acceleration term and the

roll-rate term in the performance index are set equal to

this respectively (one-half of square mean miss distance),

then

B T. 2(ac  a d)  dt - 12.5 m (3.16)

0

J dt - 12.5 m2  (3.17)

0

The nominal time of flight for the terminal phase is set

equal to 5 seconds. The components of the weighting

matrix B were based on the following assumptions. It is

2
._assumed for (4g's)2as a mean-square value of (a c  a d  and"

(2 rad/sec) 2 as a mean-square roll rate to be acceptable.

Then the components of weighting matrix are:

B1 0.003254 sec
3

2
B 1.25 m sec
2
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The commands a and P are computed every 0.05 sec

and are frozen when the Time-To-Go falls below this interval.

In order to simulate the optimal controller appropriate

scenarios were developed below with restriction that the

Time-To-Go was 5 sec and the speed of missile is two times

faster than that of target. Three scenarios; tail-chase,

head-on, side-approach engagements, were chosen as possible

cases in this work.

In case 1, tail-chase engagement, the target flies 100m

above the missile and 2500m uprange with a horizontal east-

ward acceleration of 4g's. Figure 3.3 shows the case 2.

In case 3, side-approach engagement, the target flies 400m

above the missile and 1900m uprange with a horizontal north-

ward acceleration of 4g's at t = 0 as shown in Figure 3.4.

For simplicity, when the scenarios were set up, 10OOm/s was

taken as a missile speed, 500m/s as a target speed in case

1 and case 2, 600m/s as a missile speed, 300m/s as a target

speed in case 3, and 4g's as a target acceleration for all

three cases. When simulation was executing, this first

simulation assumed perfect state feedback without the use of

an optimal estimator.

The simulation results are shown in Figure 3.5 through

Figure 3.10. At first, the optimal controller with no time

lag was tested for three scenarios, as shown in Figures 3.5

and 3.6. For scenario 1, the normal acceleration command

in initial phase is very large, then decreases to zero at

41
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FIGURE 3.4 SCENARIO-3 SIDE-APPROACH ENGAGEMENT.
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at the final time. For scenario 2, the acceleration is zero

in the initial phase, then increases and converges to zero

finally. For scenario 3, the acceleration starts from zero,

but, increases rapidly up to the maximum acceleration then

freezes for seconds before decreasing. The acceleration

does not converges to zero at the final time. Comparing

these results with the variation of the roll rate command

in Figure 3.6, the opposite trends are observed in the

results of scenarios 1 and 2, i.e., if an acceleration

command in the initial phase is large, a roll rate command

is small. The acceleration command in Equation (3.5) is a

linear function of PZC-miss in of z-direction of the missile

coordinate system. For scenario 1, PAC-miss in the

z-direction is relatively large, this causes a large accel-

eration command and a small roll rate command in initial

phase. For scenario 2, the relative magnitude of the PZC-

miss in the z-direction is small. This cause a large roll

rate command in the intial phase. For scenario 3, the

PZC-miss in v-direction is of the same magnitude as the

relative distance as the Time-To-Go decreases. This means

that a larger acceleration command than the maximum value

allc;aable in the missile body coordinate system is required

at some of instance time during the missile flying. Thus

the acceleration does not converge to zero at the final time.

In the derivation of the equations for control commands, a

small angle approximation was assumed. However, in the
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scenario 3 this assumption is questionable. The roll rate

command computed as shown in Figure 3.6 shows a sine .:ve

characteristics which is possibly due to overcorrection.

The simulation results for a 0.5 second time lage are

shown in Figure 3.8 and Figure 3.9. The time lag causes

much larger acceleration control commands. This includes

overcorrections, so that the control commands do not

converge in the final phase. The other characteristics

follow the explanations given in the analysis of the cases

with no time lag.

For all three scenarios the miss distances were obtained

in the simulation of both cases, no- and 0.5 second-time

lag. The miss distances are below 0.5m for all three

scenarios in the case of no-lag. In the no lag case the

control laws gave excellent results. In the lag case, the

miss distances are S.9m for tail-chase engagement, 0.8m for

head-on engagement, and 32.9m for side-approach engagement.

The miss distance of the side-approach engagement with a

different maximum acceleration limit fo 23g's results in a

miss distance of less than Sm. This higher maximum acceler-

ation limit will be used in the scenario 3 during the simula-

tions for testing the performances of whole control system

in Chapter 5.

The previous results are summarized as follows: (1) the

tracking of a target is very dependent of the missile and

target geometry, (2) the capabilities of the missile
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(maximum acceleartion and maximum roll rate limits and time

constant) in maneuvering against the target is very important

factors, (3) higher maximum accelerations are required in

any side approach engagement, and (4) the assumption of

small A in the optimal control law is a limitation in the

general case. Nevertheless, the control laws developed

from the optimal control theory for both the no lag and the

0.5 second-time lag cases yielded successful results for

the specified scenarios. Since the optimal controller with

0.5 second-time lage auto pilots resulted in a miss distance

of approximately Sm with complete state variables feedback,

it is expected that the inclusion of an optimal estimator for

these particular scenarios will results in still larger miss

distances.
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IV. OPTI.!AL ESTIMATOR

A. DESCRIPTION

Without full state variable feedback it is necessary to

estimate the state variables. This chapter describes the

Kalman filters used in the state estimation. These filters

were designed for respectively: (a) two measured states,

(b) four measured states, and (c) six measured states.

All measurements have noise superimposed on them. It is

assumed that the nature of the noise source is known

completely.

The Kalman filter is the optimal estimator of the

states. Since the measurements are non-linear, it was

necessary to use the extended Kalman filter theory. A

first order extended filter was assumed in this work. In

developing the filter algorithm, the non-linear measurement

equation is linearized about the most recent state estimate

and then the Kalman filter algorithm is applied. This is a

extended Kalman filter algorithm. The results of the

extended Kalman filter will yield suboptimal state estima-

tion.

In practice, the missile will have sensors of various

types that provide inputs which are related in some fashion

to the states to be estimated. The main emphasis in the

present work will be on active seeker which is assumed to
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provide the optimal estimator with measurements of line-of- J

sight angles for the case of the missile having two :r.asure-

ment sensors. For the case of four measurements one has t.%.o

of line-of-sight angles, range and time rate change of

-range. For the case of six-measurements one has two of

line-of-sight angles, two of time rate change of the line-

of-sight angles, range and its time rate change. ,hen the

measurement equations and the Jacobean matrix are developed --

the six-measurement case will be derived since the other

cases have the same kind but less number of measurement

sensors.

We will first consider the state equations and then the

measurement equations. This will be followed by a discus-

sion of the extended Kalman filter. Measurement error

effects on the initialization of the Kalman filter will be

analyzed. Finally, the estimator for the measurement cases

will be simulated in order to test the effects of the imple-

mentation of the different measurment vectors on the

extended Kalman filter.

B. STATE EQUATIONS

The state vector is limited for convenience to the .-...

following state variables:

(R , R , R z , rx' Vry r' atx' aty' atz)

(4.1)
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Where X1  Rx, X, = R , X_ = R are the components of

relative position, X Vrx' X Vry' = Vrz the CO-

ponents of relative velocity, and X atx at"..

X= a the components of target acceleration.

In order to develop the state equations, dynamic equa-

tions of target motion are needed. The target model

selected for tracking applications must be sufficiently

simple to permit ready implementation in weapons system for

which computation time is at a premium yet sufficiently

sophisticated to provide satisfactory tracking accuracy.

To meet these requirements, the model described by Singer i

[Ref. 10] will be used in this work. The model will be

presented for a single spatial dimension in order to

enable accurate tracking performance estimates to be made

for a variety of sensor measurement. If the targets under

consideration normally move at constant velocity, the

accelerations due to turns or evasive maneuvers may be

viewed as perturbations upon the constant velocity trajec-

tory. The target acceleration a(t) therefore will be

termed the target maneuver variable, in a single physical

dimension. The target maneuver capability can be satis-

factorily specified by two quantities: the variance or

magnitude of the target maneuver and the time constant,

or duration, of the target maneuver. Hence the target

acceleration, namely, the target maneuver is correlated
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in time. A typical representative model of the target

acceleration as a correlation function, can be expresSed --

as follows:

at(T) E[at(t)at(t t)] = m e> (4.2)

Where the a 2 is the variance of the target acceleration

m

and a is the reciprocal of the maneuver time constant.

The variance am 2 of the model will be approximated using

the following formula which represents the acceleration

probability density suggested by Singer [Ref. 10]:

2
2  am3 [1 4 max P0] (4.3)

where a max is a maximum acceleration rate, Pmax is the

probability of maneuvering at amax , and P0  is the

probability of no target maneuvering. And as mention in

previous chapter, a - 1/20 for an evasive maneuver will

be used in this work.

The above process can be modeled as the output of a low

pass filter driven by white noise and it can be described

by the equation

at  a W (4.4)
57
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where o (t) ,the correlation function of the wh-ite noise

input satisfies

aW(T) Za 2 m 'S(T)(.)

The acceleration model above will be applied to each

X, Y, 7 dimension with no cross coupling, the system state

equations can be written then as:

X =F X + a W

Rx 0 00 1 0 000 0 Rx0 0

R 0 0 001 00 00 R 0 0
y y

00000100-0 R 0 0

V 00 00 00 1U0 V -aX 0rx rx m

Vry 0 ry aty 0

V 00 0 000 0 01 % r -a 0rzrz yz

aX 0 00 0 00 0 0 aX 0t x x
a0 0 0 0 0 0 0 0 a 0 Wty y ty y
aZ 0 0 0 0 0 0 0 0 a 0 Wt z z

(4.7)

The Equation (4.7) is a linear state equation with the

assumption that the forcing function a vector, i.e., missile

acceleration, can be precisely measured and also resolved

into X, Y, Z components in the inertial frame.
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Many sensors have a constant data rate, samplin: tC-

data every T seconds. If the above system equation is

represented in discrete equations. The appropriate s'.'tem.

equations of motion may be expressed by

X(K + 1) = (T)X(K) + B(K) + _(K) (4.8)

where (T) is the target state transition matrix, B(K)

the deterministic forcing input vector which is composed of

first and second integration and U(K) the inhomogeneous

driving input due to white noise. Since it is assumed that

the missile acceleration is a known deterministic forcing

function, the system equation of motion can be obtained by

direct integration in each single dimension with E W(t)1=0.

The desired integration in discrete form yields

R(tO+T) 1 T 1/a2 (-1 + aT + eaT) R(tO)

Vr (tO+T) 0 1 I/c(l-e-c T V r(tO) -

-aT
aT(tO+T) 0 0 e at(tO)

T -"

-ftametO+T (t)dtdt

o-Joam (t)dt

0

X(K + 1) =D (t , a ) X(K) + am(K) (4-9)

Where K + 1 = (K + I)T = t + T, K = KT = to
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Next, if the driving input U(t) vector is considered,

this input is not a sampled version of the continuous ti:e

white noise input W(t) Since W(t) is white noise,

U(k) also should be a discrete time white noise sequence,

that is, E[U(K)U(K+i)] = 0 for i 0 Then as shown

in Reference 10, U and IV are related by

(K+I)
U(k) - J [K + 1)t Tj 1,(t)dt (4.10)

KT

Where U(K) is a white noise sequence with covariance

matrix

E[U(K)U(K)T] = q (4.11)

Following the above derivation, it can be easily

expanded to the case of three independent dimensions in X

Y, Z. For ax= = a a , and ax =a= Uz a

since the model of target acceleration is for one dimension,

the transition matrix is

I TI f I •

0 I f2 1 (4.12)

0 0 I
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Where I and 0 are 3 by 3 identify and null matrices, a:,i

fl I/a2(aT 1 + e - )

f2 - I/a(l -e - a T )i

-T
f3--e c.T

The forcing acceleration vector .is

B1 f(K + 1)T
KT amx (7r) d-rdt

(K + I)T

B2  KT a my (T) dTdt
B 1 KT mx2

(K + 1)T
B ff az (T) dI dt

B B 4  -f K a (T) dT (4-13)

B- KT ax._.

(K + 1)T
B - K a (-t) dTdt

KT m

(K + 1)T
B -f a (T) dT (413

KT mx

B7  0

B9  0
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The covariance matrix of white noise U(K) is

Q11, ~131

Q QI21 Q22 1 Q23 1 (4.14)

Q1 3 1 Q 3 1 Q331

Whe re

2l-a 4 [1 e- Te + 2aT + (2/3)(aT) 3  2(aT)2

4aTe- T]

Q12 (a ) [e + 1 2 e- T + 2aTe - 2aT + (aT)

? I 3 - aT - a

Q13= (-"/O-)[11 e - 2aTe I

Q 2/a2 ) [4eT -e 2T
Q22

- 2 - 2aT - aT
Q23 [a)[e T + 1 2e - II

2 -2aT
Q33  [1 -e I

C. MEASUREMENT EQUATION

In the case of the estimator with six-measurement sen-

sors the present study assumes that the active seekers of

missile give the measurements of the sightline angles
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R the time rate change of the sight line angles

the relative range R , and the time rate change

of the relative range R contaminated by the Gaussian white

noise. Then the equations of measurements in discrete time

form are

Z(K) = h(x,K) + V(K) (4.15)

where Z(K) is a sequence of measurement vector contaminated

by white noise V(K) and

elevation angle r

elevation angle rate er.

azimuth angle - rr
h(x) = -.

azimuth angle rate

range R

range rate R

The missile seekers actually measure the data about the

seeker axes. Thus, throughout this development the assump-

tion is made that the missile possesses an inertial measure-

ment unit that accurately specifies the missile's orienta-

tion in space so that a transformation from seeker to

inertial coordinates can be made.

Referring to Figures 2.2 and 2.3, the six-measurement

vectors can be written

63



R R
x" y= tan I  Ri:

( + Ry")l R 2

v r R V + R R V (R + r)
rG x z rx yzry x r

r R2 )(R 2 R /2
R (R 2 + R + , 

x y z

tan [ R"

r• R

* Vr, - RyVr + RVr

r R cos6 ( 2 R 2 ) .. _

xx
RRX

2 2-2
r (R +Rs v R +

x y

RV + RV + RV
x xrx y ry z rz

(Vr )/R - x 2  + R + R 2)1/2(R x + y

but Rx ;X 1 ,Ry =X , R. 3  7Vrx =X 4 , X 5

7rz '6
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The measurement vector can be expressed in terms of state

vector

h ~ -1  3 _______h an 2 + 1'/2
(XN + X 2 - 1--i

22 2 "
X X34 X 2 3X5 + (x + )XXh ~ ~ 32 2 3/ " 1' 2 /2ii

2 (X1  + X2 + X 3  
2 (X1  + X2

h(x) l 3  tart -
3- 3

-XXI2X4 + X1X 2%X .
4  . . 2 2 X32)1/2 ( 2 N 2

1 2~ 1 2

22 2 1/2X X + X +X ) .

h6  (X 1
2 + X2 + X3

2)1/2

(4.16)

The measurement noise covariance matrix for the active

seeker can be written

2a 20 0 0 0 0

0 .2 0 0 0 0e
T 0 0 a2 0 0 0

E[V(K)V(K) T ] = R .2 (4.17)0 0 0 3 0 0..

0 0 0 0 OR2  0

0 0 0 0 0 aR --
65



Where the diagonal elements are the variances of the indi-

vidual measured quantities.

As shown in Equation (4.16), the measurement vectors are

the non-linear functions of state vectors. It is impractical

to implement in non-linear form because the computation of

Cgain K and error covariance matrix P in update process

in extended Kalman filter algorithm is not possible. To

simplify this computation, and to implement the extended

Kalman filter, the Jacobean or matrix of partial derivatives

H will be determined, i.e.,

Hij 3 (4.18)

The Jacobean will be a 6 by 9 matrix because h is a vector

with six elements and X is a vector with nine elements.

Performing the operation, the components of the matrix H

are

.= (- x ) / (D D
44 1 2 01

2
H = (X X )/11D

45 1 2 0 1

H 3 H =0 H : H =46 7 4 9. ,

: (X )/(D )
1 1 C

h !2 (X2 )/ (D C

S = (X )/(D )
3 C
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P = 0 ' 0 Hi = H = 'H = =
E 55 56 57 5)

2 3"i
i .~ ~ --,.ldx)-( (D

6 1  L - .2 1X
i 

j

2 3
x 5 

- )2 CD
2 3

It = (D 4x ID ] D x ) /( o, I  ) ;'
E 3 0 6) 2 3)-j

H = (X)/(D
E 4 1 C

= (X )/(D )
5 2 c

H = (X )/(D ) -:
E6 3 C

H =0 H 0 H =0
67 68 69

2 2 2 1/2
= (X +X +X )

C 1 2 3
2 2 1/2"- "

( = 1 + X 21 1 L -:=

22 2 2 2 2

Sx ((ix (2 D D -X -X (X +X )3r +D

2 2 3(.5 6 0 12 1 6J 1 C

2 2 2 2
= (x ~~ ~(X K+K)(D +2D1. 4liX I , 6 )  i 2 I5 6)/ ( 1 ,2 o )0_ "

2
H (X X)/D D)11 13 1'.,;_

H'i ( XX)t/ DOD),-;

12 23 0 1

2
v = (-D )/(t )

13 1 C

H =0 H :0 H 0 H =0 H =0 H =0
lZ 15 16 17 18 19
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a V

53

c 1

5 3, = (E ) ( D

E )(D D

1 3 3 12 3
(X X )/(D D24 1 3 3

2 3 3F"2 (X2 X ) (D D1

3
H (D X/

2 1 3 0

i 0 H = 0 H = 0
27 28 29

1 1 2

X )/(X x

3 2 1 1 2
H =0 H = 0 H = 0 H = 0 1 =0 1 =0 -

33 314 35 36 37 38 -

I! = 0i.
39

E 4 ()/( D ) • 11 4 C 1 "..

3 4
H (D )/(D, D
42 5 1

3 2
Ii 43 (XlX2XIX - XYiJ (D D 1

2 2 2-  o 2 2..
x )K x - D + X (D +2D )- -4 2 4 1 1 1 05-"-

2 2 2 2
x (X - x)[-Do D + X (D + 2 D
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D. THE EXTENDED KALAN FILTER-

Optimal estimators that minimize the estimation error,

can be divided into two processes, the one is the updating

process to estimate the state vector at the current time,

based upon all past measurements, the other is the extra-

polating process to estimate the state at some future time.

Optimal estimation procedure for linear state equations and

non-linear measurement in the form of discrete time will be

described referring to Reference 6. Figure 4.1, a timing

diagram shows the flow of the various quantities involved

in the discrete optimal filter equations.

The discrete system equation whose state at time kt is

denoted by simply X(K) , where U(K) is a zero mean,

white sequence of covariance Q(K) , is

X(K) = X(K - 1), + B(K - 1) + U(K - 1) (4.21)

where P is a transition matrix

E=U(K)] 0 (4.22)

T-E[U(i)U(j)T] -- Q ij (4.23)

The measurements are the non-linear function of the system

state variables, corrupted by uncorrelated white noise of

covariance R(K) . The measurement equation is written as
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:(K) = h (X,K) + V(K) . 1

where E[U(K)] 0 (4.2) j

E[\v(i)V (j)T] =R (4.26)

The initial conditions are

E[X(O)] X(O) E[(X(O) - X 0)(x(O) - 0) A PO (4.27)

E(WkV T ) = 0 uncorrelated (4.28)k) .

The Kalman filter algorithm is to minimize the estima-

tion error, i.e., error covariance. If X denotes an esti-

mate of state vector, X , and X is the mean value of the

state vector, the error covariance matrix is defined as

.TP = E[(X- X)(X -X) ] (symmetric) (4.29)

The development of the extended Kalman filter algorithm with

a few definitions is essentially more application of the

expectation operator E. We will consider the updating

process then the extrapolating process. The update equa-

tions are used to incorprate the latest measurement in the

estimate and in the covariance. After we obtain the updated

covariance matrix we will then consider the optimum choice

of Kalman gain and derive the equation for the esti-

mation of state. Let X(K-1)(-) denote an estimate of X
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H(K-l) ,R(K-1) 1i(K) ,(K)

P(K- 1)( P(K-l ) P(K).- P.

extrapolating updoting

process process

t(K-l)

measurement measurement

process process

*FIGURE 4.1 DISCRETE EXTENDED KALI4AN FILTER TIMING DIAGRAM.
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at time K-i g iven rneasureg~ents up to and inclu~iin- timie

K- 2 ,P("-i) (-) iUenote tilo error covariance, K(K-l'

denote Kalman gain and H(k-i) denote the Jaccobcan matrix

at time K-i liWe will seek an optimal observer in the

presence of the state excitation noise and in the presence

of the observation noise.

P(K-l)(+) = EJ[I - ( -) ( -) X K 1 [ ( -. (- ( -

(K-l)H(K-1) T + V(K-l1) TK( K-l1) T

(4.30)

T T

" V(K-l) TK(K1)T]

Rearranging Equation (4.30) using the definitions

Equations (4.26) and (4.29) and the assumption that the

measurement errors are uncorrelated, then one has

P(K-l) (+) = I-K(K-l)H(K-l) ]P(K-l) (-) [I-K(K-l)H(Kl) T]

(4.31)

+K(K-I)R(K-l)K(K-l)T

This equation updates the error covariance matrix.

Then we still need an optimal gain K. We will choose to

minimize the diagonal elements of the covariance matrix,

i~e.,

J(K-l) =E[X(K-l)(+) X(K-l)(+)] =trace [P(K-l)(+)J (4.32)
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Introducing a bit of matrix calculus, one has

aA T

[ Etrace A B = 2AB (4.33)

a [I-K(K-1)H(K-1) = -H(K-1)T (4.34)
aK(K- 1)

Applying these formulas to Equation (4.31) and solving

for K(K-1)

T T -
K(K-1) - P(K-1) (-)H(K-1) [H(K-1)P(K-l) (-)n(K-1) +R(K-1)]

(4.35)

This is the Kalman Gain Matrix.

Rearranging Equation (4.31)

P(K-1)(+) [I-K(K-l)H(K-1)]P(K-l)(-1) (4.36)

Then the update state estimate at time K-i is equal to

the extrapolated state estimate at time K-2 plus a term

which weights the measurement residual via gain K(K-l)

X(K-1) (+) = X(K-1) (-) + K(K-1) [Z(K-1)-h(k-1) ,X(K-1) (-))]

(4.37)

We need to consider also the propagation of the estimate

X(+) between measurements and the propagation of the

covariance matrix P(K-1)(+) between measurements. Propa-

gation of the estimate is straight forward and involves only
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the application of the state transition matrix and t'e .

forcing terms.

X(K) - - (K-i)'X(K-i ) + U(K--l) (4.3s)

By the definition (4.29), solving for P(K)(-) -.

P(K) (-) (K-1)P(K- 1) ( K-1)T + Q(K-1) (4.39)

Figure 4.2 illustrates the above developed equations in

block diagram form which contains a system model, measure-

ment process and the Kalman filter to be implemented, and

Figure 4.3 shows a simplified computer flow diagram of the

discrete Kalman filter.

Equations (4.35) through (4.39) constitute the recursive

formulas for implementing the extended Kalman filter

algorithm. The process is initializing by providing values

x(O)(-) and p(O)(-) In order for the extended Kalman

filter to be simulated, the next section will describe the

initialization of the Kalman filter.

E. INITIALIZATION OF THE KALMAN FILTER

The one objective of this work is to test the perform-

ance of BTT missile control system having a Kalman filter as

an optimal estimator as a function of different measurement

vectors. All values for initialization of former worker in

this work (Ref. 14) will be used for computer simulation.

76



1. Initializing the Error Covariance Matrix, P

Let c , and oa define the standard devIi tion
p .v a

of relative position estimate, of relative velocity esti-

mate, and of target acceleration estimate. The initial

values of error covariance matrix p , will be chosen as

follows. The first six elements of the initial state

vector are determined by

X(O) = X(O) V(O)

Where the measurement vector X is the true measurement

vector X plus V caused by measurement uncertainties.

The expected mean square of initial covariance matrix

components. With the assumption that the initial

covariance matrix is diagonal with the diagonal elements

reflecting the uncertainties associated with the initial

state vector estimates, the components of the covariance

matrix are

E.[v 2] = E.[V,2] = * 2 - p:7

2 2 E\ 2

EEv 4 2 = EEvs2] = 6 =v2

The last three elements of the state vector, acceleration

components, are set to zeros

X7 = 8 = = 0
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2. Initializing the Measurement Noise Variance ar.- --

Measurement errors for the active seeker are

assumed to be due to thermal noise, gimbal angle pickoff

error, environmental noise, and glint. The values of one

sigma errors in each measurement will be used in present

study. Because in the case of angle measurement, the env-i-

ronmental noise is proportional to the square of range to

target and glint errors the wander of the apparent target

centroid as seen by the seeker as raring inversely with

range to target. The errors caused by noise are generally

a highly complex function of the target geometry, target

radar cross section, radar receiver, signal-to-noise ratio

and etc. For simplicity, in present study, the constant one

sigma errors (average values) in each measured vector are

assumed to initialize the Kalman filter. Referring to

Reference 13, the one sigma values of the average errors

for measurement of angle, angle rate, range and range rate

of the present active seeker are tabulated below.

(1) angle measurement errors 0.15 -0.6 deg

(2) angle rate measurement errors 0.5 -2.0 deg/sec

(3) range measurement errors . 3 meters

(4) range rate measurement errors 6 m/sec

Before the simulation runs is undertaken, it will be

briefly discussed the manner in which the Kalman filter on

board the missile is initialized at the start of the
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engagement based on sensor data from the launch aircra, t.

The launch aircraft's sensors are assumed capable ot 0,eter-

mining, within some prescribed accuracy, the relativ

position and relative velocity of the target with respect

to the missile at the instant of launch. This information

is sued to initialize the first six elements of the filter's

state vector. However, the launch aircraft is assumed to

be able to provide no information regarding target

acceleration. Thus the three elements of the initial state

vector are set to zero, finally, the complete list of

nominal parameters for initialization is provided in Table

4.1.

F. EVALUATION OF THE OPTIL-L ESTINLTOR PERFORNLANCE

The performance of the state estimator with two-

measurement vectors (case 1), with four-measurement vectors

(case 2), and with six-measurement vectors (case 3), was

simulated to evaluate the effect of the possible implementa-

tion of the more measurement sensors on the bank-to-turn

missile for typical scenario (tail chase engagement case).

The error covariance and the Kalman gain components

selected, and the states estimated, were computed as shown

in Figure 4.4 through Figure 4.30. The control laws imple-

mented with the estimator also were tested to evaluate the

performance of the control system of the BTT missile as

shown in Figures 4.31 through 4.35.
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Figures 4.4 to 4.12 represent the variations of the

error covariances of each state variable. Figures -.

through 4.7 show the three covariances for the relative

positions, i.e., P 1l P2 , , P-- Only the covariance

of the two measurement case varies substantially. Thus

one would expect that the gain components GI , , G

would show only variations in the two measurement case as

are shown in Figures 4.13 through 4.15. The trend noted in

the set of graphs (4.4, 4.5, 4.5) and in the corresponding

Kalman gains is also observed in the other covariance

components. Thus the covariance components for the velocity

(Figures 4.7, 4.8 and 4.9) should larger variation is

reflecting in the corresponding Kalman gains of 4-16, 4-17,

4-18. The covariances of the acceleration components show ''

a similar development but there appears to be less variation

in at,' and at: acceleration covariances. In the case of

at: the variation of the Kalman gains are restricted to a

much narrower range. The error covariance and the Kalman

gain components in all three cases eventually converge to

very small values. Figure 4.22 through Figure 4.30 show the

results of the state estimations of the three estimators.

Figures 4.22, 4.23 and 4.24 show the variations of the

estimated relative position (Rx , Ry, R ). Figures 4.25,

4.26 and 4.27, the variations of the estimated relative

velocity (Vrx , Vrv, Vr). Figures 4.28, 4.29 and 4.30 the
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variations of the estimated target acceleration a

a t, atz) The trends of the curves representing th2

estimated states are similar except for Figure 4.25 ,hich

shows a wide variation in the estimated V component ofrx

the two measurement case from the true state values.

Generally, the estimated states of the estimator with

two- and four-measurement are close to the true states,

in spite of the wide variation of error covariance compo-

nents of two-measurement case. The estimator with six-

measurement vectors generates the estimated states which

show almost same characteristics as the estimator with -

four-measurement vectors, but usually underestimated the

states in comparison with the generated states of the

estimator with four-measurement vectors. Figure 4.32 and

Figure 4.34 show the curves of the control commands com-

puted using the estimated states. The results of the six-

measurement case have a wholly different form from the

curves representing the computed control commands in the

other cases. The normal acceleration commands computed

using the estimted states with the six-measurement vectors

initially have smaller values, but finally reach maximum

value as shown in Figure 4.32. Also as shown in Figure

4.34, the roll rate commands run from the minimum limit to - -

the maximum limit. The large variations of the both control

commands of case 3 during a short time interval result in
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the. worst miss distance, 15.4m. The control commands :n -Lilo-

other cases behave almost like characteristics repres,.ting

that the control commands are increasing smoothly from tie

r. zero to its maximum control command, after two or three

seconds then slowly decrea-sing to converging values. The

relatively small variations of the both control commands

during a short time interval comparing with the control

commands of case 3 result in 9.7, miss distance in case 1

and 8.7m, miss distance in case 2. From above results, the

estimator with four-measurement vectors gives the best

result, the estimator with six-measurement vectors the

worst result and the estimator with two-measurement vectors

almost same result as the of four-measurement case comparing

with the result of the estimator with six-measurement vectors.

In original measurement equation, for case 1, the

missile has two-measurement vectors which give the informa-

tion hbout the relative angles, eR and-K'R , was assumed.

These two-measurement vectors are non-linear functions of

three relative distance components, X1 , X, X, For case 2,
3

the missile has four-measurement vectors which give the

information about above two angles plus relative range and

time rate change of relative range which are also non-linear

functions of the components of six state vectors, X1, X2,

X3 , X4 , X5 and X6  For case 3, eventhough the missile

has six-measurement sensors are assumed, the measured
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vectors using the six-measurement sensors contain onlyi:

state vectors which are exactly same kinds and nu"' s

the measurable state vectors using the four measure:::onc

sensors in case 2. As the angle rates, R , are

included to the estimator as the measurement vectors in

case 3, the both angle rates are non-linear functions of

only six-state vectors, X , Xj, X 5 , X X and X

The results of the estimator with four-measurement vectors

and with six-measurement vectors show the almost same

variations of the error covariance and the Kalman gain corn-

ponents of the six measurement case as of the four measure-

ment case as shown in Figures 4.4 through 4.21.

The Kalman filter in this work is a first order filter.

Thus the components of the Jacobean matrix contain only the

first order term, i.e., all higher order terms are neglected.

As the order of the system is increased one would expect a

more complex system to response differently. The above

reasons affect to the underestimation of the states of six

measurement case as shown in Figures 4.22 through 4.30.

From the above considerations it can be concluded that as

the increased number of measurement vectors is implemented

to the extended Kalman filter algorithm, the result of the

system may not be enhanced up to the expected degree due to

the increased complexity of the system. The system with the
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V. PEIROR,L'NCE E \' U T ION OF T.. C:'.R L Y., H :.

This section will discuss the performance a,: Z2 C2t ra I"

system implemented in a bank-to-turn missile for each scen-

ario. The maximum normal acceleration, the maximum roll

rate and the time constant are the key parameters ,,hich.-

reflect the missile capabilities, the noises to mcasured

vectors are the parameters of the environmental effect, and

auxiliary variables of some importance are then total engage-

ment time and missile velocity. The mean miss distance

determined from the 50 Monti Carlo runs was used as a

performance standard for the estimators of two- (case 1)

four- (case 2) and six-measurement vectors (case 3) on each

scenario. The simulation results are shown in Figures 5.1

through 5.19. The sensitivities to variations of the para-

meters will be discussed below. Since the simulation results

show essentially the same characteristics for the tail-chase

engagement (scenario 1) and for the head-on engagement

(scenario 2). The performance on these two scenarios will

be discussed together for each parameter. The side-

approach engagement (scenario 3) will be discussed sepa-

rately.

Figures S.1 and 5.2 show the miss distance variation as

a function of missile maximum normal acceleration. For

scenario 1, case 1 shows a mean miss distance of 9.8m at
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above 13g's, case 2.9m at above 15gs and case 3 I "..,'

above I3g's. Each case also shoi.s that as the max'::_ -

of the normal acceleration decreases, the mean miss diszance

in case 1 is less sensitive than in the other two cases.

For scenario 2, the result of case 1 shows the minimum meanI

miss distance is lom and the result of case 2 is 17m at

a 21g's respectively, the result of case 3 is 32m atmax
a = 17g's. The trends of the curves show that the mean
max

miss distances in case 1 and case 2 vary in same manner,

which rises sharply as the maximum acceleration decreases.

On the other hand, the mean miss distances in case 3, vary

smoothly above arax = 13g's One may conclude from the

analysis as follows: for scenario 1, the mean miss distance ....

can be decreased since more information on the state vectors

can be obtained from the increased measurement vectors in

estimator for low maximum acceleration. In order to get the

mean miss distance below 20m for all three cases, one needs

a of over llo's. For scenario 2, as the measurement statemax.•

vectors are increased in estimator, the mean miss distance

does not decrease, possibly due to the effect of neglecting

the higher order terms in the extended filter. As the mag-

nitude of the values of the missile and target geometry

components becomes larger, the effect of the linearization

becomes more pronounced. a = over 19g's is required to
max
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to obtain the mean miss distance below ISm in case

case 2. In case .,, the mean miss distance does no:

• below 2Dm.

Figures 3.3 and 3.4 the variations of the mean hiss

distances as missile maximum roll rate varies. In scenario

1, for case I and case 2, a mean miss distance of below 10m

can be obtained when Pmax is greater than 3 rad/sec. For

case 3, one has a mean miss distance of below 16m with

P greater than 6 rad./sec. The trend of the mean miss

distances is almost constant over certain range in values

of Pa The variation of the mean miss distance below

this range is a tenth of the magnitude comparing ,ith the

variation of the mean miss distances as a function of

maximum acceleration. It is concluded that for scenario 1,

the mean miss distance in case 1 and case 2 is not effected

by the roll rate if the roll rate is above 3 rad/sec. In

case 3, higher roll rate limit can reduce the mean miss

distance. For scenario 2, the mean miss distances of case

1 and case 2 are like the trends for scenario 1. However,

the mean miss distance of case 3 has a minimum of 26m at

Pmax = 4 rad/sec, then increases up to 36m then decreases

slightly. This trend may be due to the effect of the roll

rate lag, which is caused by the increased maximum roll

rate and by the underestimations of the state variablh.s in

case 3. The other characteristics, i.e., the mean miss

distance decreases with increased maximum roll rate limit
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and Cor scenario 1, case 2 shows loss near miss di.-

than case , but fcr scenario 2, the cpjosir. tr'n

Canl be 0 x aired .ith thei same reasons as tiose c: t:. o. 1-

analsv is.

The variation of the mean miss distances with the time

cosntant as a parameter is shown in Figures 5.5 and 5.0.

For both scenarios, one has a flat plateau for low values c "

the time constant and a sharp rise with increasing calues of

the time constant, i.e., for scenario 1, Figure 5.5 shows

the curves of the mean miss distances slightlv increase up.

to the time constant of 0.9 second, for scenario 2, the

cures up to 0.5 second are plateau, then for both scenarics

the curves rise sharply. For scenario 1, the mean miss

distance of case 2 is less than that of case I up to 0.5

second time lag, but above 0.5 second lag, the results show

an opposite trend. Also over this time lag, the curves of

case 3 for both scenarios are not sensitive to the variation

of parameter up to the time constant of 0.7 second for

scenario 1, 0.9 second for scenario 2. The general trend of

the curves, i.e., as the time constant becomes longer, the

miss distance becomes larger, is due to slow system response.

From the figures showing the results, the time lag of less

than 0.5 second is necessary to obtain the mean miss

distance of the required order of magnitude.

Figures 5.7 and 5.8 show the variations of the mean miss

distances as a function of one sigma angle noise. For
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scenario I, as s,own in Ft_,re 5. 7 , the maximum m- .i S

is tanco is ob taine for th s. x ,:surenit case '-

flis s C!tI t ce a inc..) tZ! I - S s ; :les t .. o, r the tw M . -I :.

case. .\bore about the anile error of .3 d c. er t- :is

distance is not a strong function of the angle error. For

small error values, i.e., less than 0.2 degree, the curves
seem to be approaching each other. For te scenrio , the

C.. t o b e .~h e s c e n i ot , -e- , '

miss distance is a strong function of the ingle error. For

the tWO sccarios ( Figure 3. - and 5 S) , the two measurement

case has similar results up to an error of 0.4 degree. All

cases show a strong rise in the miss distance with increas-

ing error. The four measurement case seems pasticularl,.

sensitive.

The variation of the miss distances as a function of

missile velocity are shown in Figures 5.9 and 5.i0. During.-

simulation the initial stand off distance was increased to

keep the engagement time the same. One important aspect of

Figure 3.9 is that represents an opposite trend of the

vatiations in the mean miss distance to the ,general trend

of the variation in the mean miss distance. Under the

missile velocity of 700m/s, the mean miss distance is less

than 10m for case 3, from 1Sm to 12.Sin for case 2, from 15.7m

to 14.5m for case 1. However, the curves for scenario 2

show the usual trend, i.e., the mean miss distance of case 1

is the srallest and that of case 3 is the largest among the

mean miss distances of all three cases at a value of the
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1vcn i aa 0e r Yor o t h s 1 "aroS
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incre :ases ,x opr;~ If or o n c r ve of c a se

ntz- the- fore~ccin ca-ns ido rat ions as follols

va ILies of th e mi s si I e and t ar ~e t g oo me t r v c o nnot il, e i 0c')1e

saller, i.e., relativoly l.es 5e f oc t o f nl oIec t i a:~t~

i~e r ordJer1 teI-I.S ill the, ir St o rde 0r Fi I t ea cI l

contamination of the measured vectors to noises, the mean

miss distance c an beo enhanced with the estimator of th csizx -

measureIMent vectors. As the estimator algorith~m becomes

simple, the trend of the mean miss distanlces4 is less snsi-

tive to the targeot geometrv.

Figures 5. 11 and S.12 rer'se-:-nt the effect onl the Tme an

miss distance of the total engagement time. For sim ulation

the initial stand off distance was increased to keep the

constant missile velocityv. The general behavior of the miss

distances of all three cases slowlv decrease as the enuaue-

ment time increases . For case 1 , the mean miss distance

slowly decreases or is almost constant at below l1in. In the

other two cases, there is more variation in the miss distance,

but the general trend is Still downward with increasing im

to go0. Note that as time to g-o increases for a given T,

one has more characteristic time interval available reflected

in Too/ The mean miss distance therefore should be less

as the total enga-,Tcen-I(1t t eincreases . This Fact is veri-

fied from both f iJUres.
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f itures 3.13 through 3.1 s1h7ow the x-iratioa c ..

M eII miss diStacs of all three cases for s

eaceaent (sce'nario 3) as a function of each pa 1e

The large miss di stances resulting ram this, sce, '.za 1- 3

motivated its sonarate consideration. General trends of the

curves are sinjiar to the other scenarios but with hi-her

miss distance. This scenario is a strong test of the

svst em. In this scenario, the control laws are subject to

the error due to the limitation of the small angle assum, -

tion and the higher maximum acceleration capability is

required due to the large variation of the P_'C-miss in

Y- and :-direction. Thus there are some unexpected trends.

Figure 5.13 shows the variation of the mean miss

distances for each case as the ara x increases. Although

the missile velocity is less than that of scenarios 1 and 2,

the maximum allowable acceleration is increased. As shown

in figure, the mean miss distance for case 1 is llm,

for case 2 is 10m, for case 3 is 13.Sm only at a 2gs.
miax

The figure shows the miss distance variations in this

scenario are more sensitive to the amax than in the other

two scenarios. The mean miss distance of below 40m can be

obtained at a over l9 g's, i.e., more a ismax nmax

required than in scenarios 1 and 2. This trend of the mean

miss distances can be explained with the larger variation of
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t h sta e VOctor ii Y-Uirection Which can cause --

L',e , in .On'1trol c n.'.d eia io s 01

As shown in Pigui - 5 14 the variations of S S

distances of case ! :in-,I 2 as a function of p 0e JmiOnst

constant above P M = 4 rad/sec. That of case 3, however,

continuously decreases up to Pmax = 6 rad/sec, then is

.almost constant. For scenario 5 one needs a maxi:um ro l

rate of about S or 6 rad/sec to have an effective BTT

missile, which is higher than in scenarios 1 and 2.

Figure 5.15 shows the variat ons of the mean miss distances

as a function of time constant. Up to the time constant of
0.7 second, the mean miss distance is less 2Dm. For all

three cases, comparing with the results for scenarios 1 and

2, the figure shows the curves of the mean miss distances

are less sensitive in this scenario. The target accelera-

tion vector lies in same direction as the missile velocity

as shown in Figure 3.4. Because the components of the

relative velocity are major components in computing the

control commands, the more correct control commands may be

computed due to the small uncertainty in Mby and M bz

components. This results in smooth variation of the mean

miss distance curve. The trend of the miss distances as

the one sigma angle error increases, shows some different

characteristics from the trend for scenarios 1 and 2 in

Figure 5.16. The mean miss distances for all cases

increase continuously as the noise input increases up to the
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one S tpa Cerro r of a hout P. de roe. Abo0ve0 t h~ 0;'

e rr or 0 ; J .4.3 de C ase 1 d0c r QasS thc i~c ~~

caso 2 cont inue-s clcc-is in,- scas I, e Si~r~s

continuousI, 7'h he xvariations of the mecan mi ss -: sncos in

scenario I are almost plateau and in scenario 2are almos1C)t

constant uip to the one sigma angle error of about 0. 4 degree

thien rises sharply as shown in Ti (lures 5.7and 5. S.f Ti is

reason can be deduced f rom the fact that as the one s igma

angle error becomes large, the samie magnitude of the t-..o

state vectors in different direction, i.e., relative

distance in X-direction and relative in Y-direction, having
L.

the same order of magnitude niay be contaminated to the noise,

on the other hand, the other scenarios, only the components

in the X-direction being relatively large are contaminated

to the noise. From this fact, it can be concluded that the

missile in a side-engragement case is more sensitive to the

angle error than the other scenario.

Figure 5.17 shows the variations of the mean miss

distances as the missile velocity increases as a parameter

(i.e., holding the total engagement time of 5 seconds and

changing the relative position of the targ~et) . Up to the

missile relocity of 7Onm/s the curves of the mean miss

distances are plateau, after that velocity the curves rise

sharply. Figure 5.8 shows the variations of the mean mtiss

147



distances as a function of the total engagement t,:: "

holding thec onstant ve c t s of the missile an,' tL.

target and changing ti-e relative position of the 1et in

scenario).

Figure S.13 shows the mean miss distances rise s harpIv 

over the engagement time of 6 seconds. This is somewhat

unexT)ected and may be an artifact of the implementation

procedure. In other scenarios the mean miss distance as a .

function of the missile velocity increases slightly- as the

missile velocity increases and that as a function of the

total engagement time decreases slowly with increased

engagement time. From above analysis one has a conclusion

that the computed control commands should converve in the

final time as the computed commands of the two- four-

measurement case shown in Figure 3.32 and Figure 3.34 to

obtain the low mean miss distance. However, it can be

expected in this scenario that the computed control commands

do not converge possibly due to the violation of the small

angle assumption in deriving the equations of the control

commands (I.e., in this scenario the M bz component is

large in Equation (3.7), that causes the large mean miss

distances). However, in the case of relatively small magni-

tude of the missile and target geometry components, the

error caused by the violation of small angle assumption is

relatively small comparing with the errors caused by the

contaminated of the measured vectors to noises,
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liii1 tat ions or the control liuts, Cnd thIe estint ::,.

the st t voctousUS 1;i rust-orer 11 0ter. ;i1 -

verified ,ith the results that the zean t!isc ds .

Iln for case 1, l m for case 2, 1'm for case 3 at the

missile velocity of 600m/s and the engagement cieof 5 -

seconds, as shown in Figures 5.17 and 5.IS.

The final Figure 5.10 shows the variat ions of the !-,e,-in

miss distances for case 3 of all three scenarios as a func-

tion of the one sigma angle rate error. The result renre-

sents that the variations of the mean miss distances due to

increased input values of one sigma angle rate error are

almost constant for scenarios 1 and 2. For scenario 3, the

mean miss distance varies at constant rate of inclination.

This slope of the curve is relatively small comparing with

the slopes of the mean miss distance curves as the other

parameters change. From this analysis, it may be concluded

that the exposure of the measured vectors to the angle rate

error noise is neglegible in the case of present study.
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Vi. CONCIUS ICONS

A simple but effective biased guidance la ai three

extended Kalman filter equations have been derived frm the ..1.

optimal control theory for a bank-to-turn missile with zero-
lag and with 0.5 second time lag autopilots for pitch accel-

eration and roll state.

The equations of motion are linearized around the present

orientation of the missile with the assumption of small

future roll angles. During computer simulation, the optimal

control laws and estimators were tested separately invoking

the separation theorem. In the simulation of the system

three optimal estimators were used., i.e., estimator

with two measurement vectors, with four-measurement vectors -

and with six-measurement vectors. The system has been eval-

uated for three scenarios, tail chase engagement, head on

engagement and side approach engagement.

From the analyses of the simulation results in Chapters

3, 4 and 5, it can be concluded as follows: The control law

was successfully simulated for a hypothetical bank-to-turn

missile with pitch acceleration and roll rate autopilot

within the imposed limits on three scenarios. Miss distances

with zero-lag were negligible for all three scenarios

(below 0.5m). For the time lag case one had miss distance

of 5.9m for scenario 1, 0.8m for scenario 2 and 32.9m, with
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0.5 second lag and with a 20gS. B% imposi -max

higher maximum g of 23 on the scenario 3, the m. -:s

distance was reduced to below Sm miss distance. tln2 wcu -

expect a high g requirement for a side enga ...... ..it.a-

tion as in the case of scenario 3. It is evident that the

missile's tracking ability against the target is very

sensitive to the missile and target geometry, the missile's

manuevering capability is also a very important factor.

Optimal control laws applied to the side approach engage-

ment place a severe strain on the system from the vieupoint

of the small angle approximation. Increasing the number of

measurements did not result in increased performance in the

sense of smaller miss distances for the missile except in

isolated cases. This may be due to the increased com-

plexity of the system as t'e number of measurements was L.

augmented. Further, in this study only first order extended

filters were implemented. It is possible that better

performance could be obtained at the expense of increased

computational load, by using a second order extended Kalman .

filter.
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APPI]NDI N A: PROGRAM LISTING

This appendix- provi,!e-s listing of thie computer proc-r;

Used in the present study. Only one program for the six

measurement case is provided. Except for a few differences

in the Subroutine filter the programs for the two othier

cases are identical to the program included herc.J
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c9

//40R1.B~gIN DE -J
-tLICIT rZAL*E 1;-b,CN-Z)

RZIL*L4 '11I -AZA2 ;cP~~ ,1G2,2,2 U, ,j7'c
*,Uczl -1£,3,4 .2

(9,9) :aR (06 X~j ,:f it P. 9) (9

DIHENSION T1 j2CC) ,AAC (2J-4 ii<;t) , EANN (203) , X1G (200) 75-2 (2.0)

fli!4SO c1 1 (2)-i ,J GGZ4 1 20 ) 3 2
L I~iI N3 2C 01 c 2 13') c) ,u4 I)CCI 'U5 (13j)

E I r Ns I o £6 12CO) E7 Ed0 (Z CC S~ (C)
ZIEiO P1 (ZCC) i2 ) jP (.'2 4. 20) ,5 (2 3 )

21!ZSIOI P6 P32 4P c00 3;1C , P9 ~2C)
oilZNS lb XfUSS 1 5 ; IU 5(50 *Z :iSOJ ,DM:3s50))

COMON/hEEZE1 'h12,2,31I3,/~lE

C INFI AI

lNCASE 1
NIA2(=l 10
1FEINt7=1
LEFINT=5

ILCT= I
1H10=0.-
?ICo=O.

Z1(. 25'30.

ZIG= -100.

10!=0.

B;=1.25

Cl).05
C-1 Y. 0 5

C72.056
SAI. 026

Ca~ 266

SF3. 0 026
S I 3. 0 C 6
S15=3.
S36.6.

SEC=3.

SVZL=6.
SACC9.*.8

TACC=. 5
AMAX2C.*S'.8
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i'- A. i.)

C-
C

C IN1~ IU! '.' XA~i~z
C

Dc 13) 1=1,2

130 CC~i.t:;l -Z

C
OC 1.33 p1. 2

R ft~ a) o

C

CAL i.3,3) I =S C!' ,l 2F , 2C1, i,23 2

C
A 125 1 o'7jA .143 =D27

C=3
CAL UiC S4C ,'~ 12

Q -447

C
24,12 =Q 11

(2 =Q C12

A5~

C (9 ) -F2

Q 19,3 -,j 13

oi~ a154



C

~inn (6 ~6
CC 134. li,

06 CCYA F/5~( IC IIAL Q2 A 1XI/

C
C ALL is urcC N iS .Z O l!
C

C l=W ~

C

Q (j) 3 .2

C

Q0I co) =Q (6.6) *E2.
C

0~~ 5U1 +Q i, 1

C

is i' 2 1+

C
[C 13z j,

C

DO 150 1=1,9C~S

C
C INIITIASE LC
C

C
R= C SZ~i FEC IT- 16

1=02=
16CCCOTT~U

C

1=0.

y~ (5) zx:iu]

155



Y 47) =Z2

jt =71I X LC

y 1 " T

CC
C CRA 4 21 4cc!'L'2

CA ,L. 1. '*L
CA~~~t, M I

CAL. L -C,,'I 'I

LC 1,13 £111
DC I17j J=1,9

17C CCI. -N

P1;2 =)S.Lba*2
12~ 3) -SS*-2

i 4c,o ) ~VELI*z
p0 7) 7 -C'

c P : 34 =
4 C-*2

CC 2O =19
CC 190J = 1,2

190 cc~rNU

C !'.ART !A.2-C'EC~ I CC;

70C CCi'UN U

C
c CElI.E I. E2-;AT1C IU A]LES

t'=y()

Y?(Y
X £C5

PHI 14)

AM= (16)
C IS:qTI AL 1. BCL'Y )I- 5A4 C~A2~

A~ 11 -DC S 01 ) *lcI Z~)~~o ~c 3: '
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p7777

A22 ~ ~ ~ ~ ~ ~ ~ ~ ~ J s:s2*:NTZ) ~ iS ~~ ~i 2
.

A2 1= j30 .7: I I cs(;i. &

A.3 2=:Cs iZ S -f)*SZl ET 2 ) i 'Z

s Y=k 12

EZ 13. Vz
xc4 l~

c 1 FTZI uSc EC2 :

X~g7) ,j.

X2 A

X2 2
'4-c ( ±1 4 l1 ~ ~ YS V~)/

C L -AIAZI Y412I CC
C-sl 104 )- c s(- z )* XV X D 1.i(i's -- iN(3 .)* y

i ) (
r ~ ~ ~ ~ C) S- .:;1iZA +(C z S S V ) (

Z 11)~: =, . 3 Lz S::
ZIS= 1.1 :j- (1 Z tC E~ -57 ~

z 15 I s 15

...................



C

C GZN3 R A I-3 Cc . ..........

C

I Z I = c : A,*

C)

AA*. (N) -

S.s 0 2
a 1%N) SX
UTe'. 2 I R.

77R

72 IN) =ArX

4 ) (1

I5N) =X
E6 (N j6)

1 ( :, ((A

39~ 
1

kGil 0 ( .R C) I * 1,1
G31(N 0 - 1' 1),

P 1 N =Gi (,

;.~~II 4C ') P250
PA3

E6DPI57
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10 FC C I c 1
25c C CNI 1

C ;c TC 350

CC 301 ~ !=h~ I,)*Z.~ '

3C
C C 3.C ( T I-, : .' j 7 (C ,

iIG.sc cc U0 Z

C _BIK C

C
CALGC TTGU.0

CC -

Is.Ge.~l2 C: ~
4C EXC T A~A 1I~ (U21t U-7Z i10

C

CALL 12L'T-I (Y , B~,,, AN

c 'iLEINT i KAL: A~l act (?.E.-C0!
Cil

900 CCI\TI~iuE

Cl 12? -7 ~6
r. zy 13)- )

Dmo Tcx**, Cz*2tDZ**2)

Z1S.3 11 =D

50 i~= ,7IC.. r ,5x, ?IS13 5'ix2 ':Y= .710.3,5X.

IP(IPLOT.NE.1) GC TO 95)

CALL PLOIG(TL' NI T IE~ Z!, Zr (S --C) ,10, RX (AEH25)I

*11, 0 . 3*~.

CALL PLcIGvE 14~ 23,i 1, Jr'TIE~ (SLOC) ',10,':Y~ (ET SS)C

6A16 1. iX.' 1,0 9. .IRS

CALL ?LoTG(TZ 0,\.,, I1, 'TtIE (S EC) ',1C,'nZ (ZT ERS IC

CAL 16 ~ G(, 0.4 :.Il 1. IT T. !! 5.1E) IC mzzssC

CALL ~L It' 4SrC ',1 1'T I M ES(b C)
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.ALL '(~iT ~ T I ,1, E Is~ ESC) ' a :x (M - ?s/ :Ec.i

CALL ?L, G(T H81 I I , ,t E t37-C) 1 10,'2 1 :33s:Y"

1k 19 ').) 1Z S(222.1'.. .
CALL ~ 1,,1 ITI: SC) '1 1 AST( 3 ,

3 1GT~ C , 0, AT Z (EE)', -- -2

CALL ?CG 1 ,. ,,.'Ii(SC) '1,1C, 5:i2(F~ 11

C* ;1 ITS~A Z:!.~::: / E2 (3-C 5 T(,3

HAlL IT 1M ,: 4 C) 5

6,A. P~ i LO G (T i .) , I 1 Tt I -) 1, 3.2 6

CALL PL,:;7 ,r~.. 1 IT: E' (S -C) I C 1

C L 1L L0 1(TCi 3,1II 5Z)1 C

4.ji~ TC 6

a SEE42 )',0..

LL LG~,$.. ::C N 1 :U! 4.: s - )
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Ci C z I~-

375 CCN'r!2IU7N SIC?



s:z H0:;IINXE GZ X,10Ac 2Cz~

CC2MON/T"" / 1,2 A,2'3 3 1 -
c

G=9. 8

I G C = -Y;iX * rVRX, Y Y ZtV Z) 2 (WX*+ v1 Yt:2 + VxaZr
ICF T*TGC-1~ t-.I- *tC):C*

F1=3."TGC
4 (3*1J;3

DPC Iz) ICC Z -t

5 A C=,) .l

100 ccNTi:;U%
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,11G AT 16

G) 3 ~ c 1 ~

C zc vL''3~t. (4 1 ~ &I jNI~7
C

De 75 n! ,I

A

D LJ T Z A* cc E (T20

C CT (4 ) .,3Z 1 :-
D-C0T ( U ->I. 1C

IF cr11. I I ) C s ' 6
I1.: .EC "T I

G 0 7UT(5)0

Gc 7 75 =INRAI
I~ I . Z 2 ') GCtIC 6

-I-i,zu (-

GC TO 75

C r

75 Dlx~l =D ) ;[JCS ! :
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C

=5 1 D 4 - C 4zu *D)
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C

Di:L~S!C*, A ,I .'X(,

CC

CALL 71iULZ .1 5 d *;,,i~3A:,X
C

DO r

CAL AC~( I ) .3 E '3)

5J CC IN3 U=,

c FC3 ;I P AC 'I C, AI s
c

CALI Vd 0X (1) 99,3
ALLK (2) A A1A

CA 
M C(L3)

Dc 15
cc LX J=16 9
PP1C)=r~:I Z c1

1 0 CC :; 1; EZ$2:(*2

15 l CCI..NX
zc ~ . (
FL-10. c ANc D A1BC
DJ.1.3 2 tCc*1~ X1 24X~22U(. 1432

=XX3(.*2Z*iE (x*1C.2*2)(.31u+:*

2=1* (-*141+2X24

DC 250 Il2)

1.5 (I* I* +s2  XL *5 x (C 2 * ( * -( 3

ZH2* B'02XX/Z~DD

134,2 205110

200 C I!S

25 4TNU



H 0o ) \1JJ
XI IDD X

C

'.0 CC j 1

-15 C CCT:l c

C INC' PT E AMN YT

C
CALL 4 ,6

C J

45C CCSTI!UU'
C

CA IN7E !T Y GD M A T z' I I~C7
C

C
C UCAL CCSUL ? (-, t ,,i i ,C , ,6

C

D UCA S650 I FC:ji
c C60~~,

65C c0(i _DA:.S

C

CC 500 J.66



1~LIf az,=V/ kA? A-)

V2=DX (-A4)

711=V/C*)

12=7/ 1:(C - +2*v 23A3)-

72 3 MT/C

33*

Fl= (.1- 1. +F1) / C**2)
i =( 1.- 1)/C

k Rt
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I MFL I T iAZ L ,->Z

Z30 CC\,-::;L
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